

Deitel® Ser ies Page
How to Program Series
Android™ How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Deitel® Developer Series
Android™ for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
iOS® 8 for Programmers: An App-Driven

Approach with Swift™, Volume 1
Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
(continued in next column)

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android™ App Development Fundamentals, 2/e
C++ Fundamentals
Java™ Fundamentals, 2/e
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 8 App Development Fundamentals, 3/e
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—youtube.com/DeitelTV

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com

www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android™ and iOS® app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kelsey Loanes
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt
Media Team Lead: Steve Wright
R&P Manager: Rachel Youdelman
R&P Senior Project Manager: William Opaluch
Senior Operations Specialist: Maura Zaldivar-Garcia
Inventory Manager: Bruce Boundy
Marketing Manager: Demetrius Hall
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Cover Designer: Chuti Prasertsith / Michael Rutkowski / Marta Samsel
Cover Art: © Willyam Bradberry / Shutterstock

© 2016, 2013, 2010 Pearson Education, Inc., Hoboken, NJ 07030. All rights reserved. Manufactured in the United
States of America. This publication is protected by Copyright and permissions should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materials from this work,
please submit a written request to Pearson Higher Education, Permissions Department, 221 River Street, Hoboken,
NJ 07030.

Any of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps. Credits and acknowledgments borrowed from other sources and reproduced, with
permission, in this textbook appears on page.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the Microsoft Corporation.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained
in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with,
or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Australia Ply. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education-Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Hoboken, New Jersey

Library of Congress Cataloging-in-Publication Data
On file

10 9 8 7 6 5 4 3 2 1

www.pearsonhighered.com

ISBN-10: 0-13-397689-0
ISBN-13: 978-0-13-397689-2

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Apple, Xcode, Swift, Objective-C, iOS and OS X are trademarks or registered trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Other names may be trademarks of their respective owners.

Appendices F, G and H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

Preface xxiii

1 Introduction to Computers, the Internet and
the Web 1

1.1 Introduction 2
1.2 Hardware and Software 3

1.2.1 Moore’s Law 3
1.2.2 Computer Organization 4

1.3 Data Hierarchy 5
1.4 Machine Languages, Assembly Languages and High-Level Languages 8
1.5 The C Programming Language 9
1.6 C Standard Library 10
1.7 C++ and Other C-Based Languages 11
1.8 Object Technology 12

1.8.1 The Automobile as an Object 13
1.8.2 Methods and Classes 13
1.8.3 Instantiation 13
1.8.4 Reuse 13
1.8.5 Messages and Method Calls 14
1.8.6 Attributes and Instance Variables 14
1.8.7 Encapsulation and Information Hiding 14
1.8.8 Inheritance 14

1.9 Typical C Program-Development Environment 15
1.9.1 Phase 1: Creating a Program 16
1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 16
1.9.3 Phase 4: Linking 16
1.9.4 Phase 5: Loading 17
1.9.5 Phase 6: Execution 17
1.9.6 Problems That May Occur at Execution Time 17
1.9.7 Standard Input, Standard Output and Standard Error Streams 17

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 17
1.10.1 Running a C Application from the Windows Command Prompt 18
1.10.2 Running a C Application Using GNU C with Linux 21

Contents

viii Contents

1.10.3 Running a C Application Using the Teminal on Mac OS X 24
1.11 Operating Systems 27

1.11.1 Windows—A Proprietary Operating System 27
1.11.2 Linux—An Open-Source Operating System 27
1.11.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and

iPod Touch® Devices 28
1.11.4 Google’s Android 28

1.12 The Internet and World Wide Web 29
1.12.1 The Internet: A Network of Networks 29
1.12.2 The World Wide Web: Making the Internet User-Friendly 29
1.12.3 Web Services 30
1.12.4 Ajax 32
1.12.5 The Internet of Things 32

1.13 Some Key Software Terminology 32
1.14 Keeping Up-to-Date with Information Technologies 34

2 Introduction to C Programming 39
2.1 Introduction 40
2.2 A Simple C Program: Printing a Line of Text 40
2.3 Another Simple C Program: Adding Two Integers 44
2.4 Memory Concepts 48
2.5 Arithmetic in C 49
2.6 Decision Making: Equality and Relational Operators 53
2.7 Secure C Programming 57

3 Structured Program Development in C 69
3.1 Introduction 70
3.2 Algorithms 70
3.3 Pseudocode 70
3.4 Control Structures 71
3.5 The if Selection Statement 73
3.6 The if…else Selection Statement 74
3.7 The while Iteration Statement 78
3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration 79
3.9 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 2: Sentinel-Controlled Iteration 82
3.10 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 3: Nested Control Statements 88
3.11 Assignment Operators 92
3.12 Increment and Decrement Operators 93
3.13 Secure C Programming 95

4 C Program Control 113
4.1 Introduction 114

Contents ix

4.2 Iteration Essentials 114
4.3 Counter-Controlled Iteration 115
4.4 for Iteration Statement 116
4.5 for Statement: Notes and Observations 119
4.6 Examples Using the for Statement 120
4.7 switch Multiple-Selection Statement 123
4.8 do…while Iteration Statement 129
4.9 break and continue Statements 130
4.10 Logical Operators 132
4.11 Confusing Equality (==) and Assignment (=) Operators 135
4.12 Structured Programming Summary 137
4.13 Secure C Programming 142

5 C Functions 157
5.1 Introduction 158
5.2 Modularizing Programs in C 158
5.3 Math Library Functions 159
5.4 Functions 161
5.5 Function Definitions 161

5.5.1 square Function 162
5.5.2 maximum Function 165

5.6 Function Prototypes: A Deeper Look 166
5.7 Function Call Stack and Stack Frames 168
5.8 Headers 172
5.9 Passing Arguments By Value and By Reference 173
5.10 Random Number Generation 174
5.11 Example: A Game of Chance; Introducing enum 178

5.12 Storage Classes 182
5.13 Scope Rules 184
5.14 Recursion 187
5.15 Example Using Recursion: Fibonacci Series 190
5.16 Recursion vs. Iteration 194
5.17 Secure C Programming 195

6 C Arrays 214
6.1 Introduction 215
6.2 Arrays 215
6.3 Defining Arrays 217
6.4 Array Examples 217

6.4.1 Defining an Array and Using a Loop to Set the Array’s
Element Values 217

6.4.2 Initializing an Array in a Definition with an Initializer List 218
6.4.3 Specifying an Array’s Size with a Symbolic Constant and

Initializing Array Elements with Calculations 220

x Contents

6.4.4 Summing the Elements of an Array 221
6.4.5 Using Arrays to Summarize Survey Results 222
6.4.6 Graphing Array Element Values with Histograms 224
6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results

in an Array 225
6.5 Using Character Arrays to Store and Manipulate Strings 225

6.5.1 Initializing a Character Array with a String 226
6.5.2 Initializing a Character Array with an Intializer List of Characters 226
6.5.3 Accessing the Characters in a String 226
6.5.4 Inputting into a Character Array 226
6.5.5 Outputting a Character Array That Represents a String 227
6.5.6 Demonstrating Character Arrays 227

6.6 Static Local Arrays and Automatic Local Arrays 228
6.7 Passing Arrays to Functions 230
6.8 Sorting Arrays 234
6.9 Case Study: Computing Mean, Median and Mode Using Arrays 236
6.10 Searching Arrays 241

6.10.1 Searching an Array with Linear Search 241
6.10.2 Searching an Array with Binary Search 242

6.11 Multidimensional Arrays 246
6.11.1 Illustrating a Double-Subcripted Array 246
6.11.2 Initializing a Double-Subcripted Array 247
6.11.3 Setting the Elements in One Row 249
6.11.4 Totaling the Elements in a Two-Dimensional Array 249
6.11.5 Two-Dimensonal Array Manipulations 250

6.12 Variable-Length Arrays 253
6.13 Secure C Programming 256

7 C Pointers 274
7.1 Introduction 275
7.2 Pointer Variable Definitions and Initialization 276
7.3 Pointer Operators 277
7.4 Passing Arguments to Functions by Reference 279
7.5 Using the const Qualifier with Pointers 283

7.5.1 Converting a String to Uppercase Using a Non-Constant Pointer
to Non-Constant Data 284

7.5.2 Printing a String One Character at a Time Using a Non-Constant
Pointer to Constant Data 285

7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data 287
7.5.4 Attempting to Modify a Constant Pointer to Constant Data 288

7.6 Bubble Sort Using Pass-by-Reference 289
7.7 sizeof Operator 292
7.8 Pointer Expressions and Pointer Arithmetic 295

7.8.1 Allowed Operators for Pointer Arithmetic 295
7.8.2 Aiming a Pointer at an Array 295

Contents xi

7.8.3 Adding an Integer to a Pointer 296
7.8.4 Subtracting an Integer from a Pointer 296
7.8.5 Incrementing and Decrementing a Pointer 296
7.8.6 Subtracting One Pointer from Another 297
7.8.7 Assigning Pointers to One Another 297
7.8.8 Pointer to void 297
7.8.9 Comparing Pointers 297

7.9 Relationship between Pointers and Arrays 298
7.9.1 Pointer/Offset Notation 298
7.9.2 Pointer/Index Notation 299
7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 299
7.9.4 Demonstrating Pointer Indexing and Offsets 299
7.9.5 String Copying with Arrays and Pointers 300

7.10 Arrays of Pointers 302
7.11 Case Study: Card Shuffling and Dealing Simulation 303
7.12 Pointers to Functions 308

7.12.1 Sorting in Ascending or Descending Order 308
7.12.2 Using Function Pointers to Create a Menu-Driven System 311

7.13 Secure C Programming 313

8 C Characters and Strings 333
8.1 Introduction 334
8.2 Fundamentals of Strings and Characters 334
8.3 Character-Handling Library 336

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 336
8.3.2 Functions islower, isupper, tolower and toupper 339
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 340

8.4 String-Conversion Functions 342
8.4.1 Function strtod 342
8.4.2 Function strtol 343
8.4.3 Function strtoul 344

8.5 Standard Input/Output Library Functions 344
8.5.1 Functions fgets and putchar 345
8.5.2 Function getchar 346
8.5.3 Function sprintf 347
8.5.4 Function sscanf 348

8.6 String-Manipulation Functions of the String-Handling Library 349
8.6.1 Functions strcpy and strncpy 350
8.6.2 Functions strcat and strncat 350

8.7 Comparison Functions of the String-Handling Library 351
8.8 Search Functions of the String-Handling Library 353

8.8.1 Function strchr 354
8.8.2 Function strcspn 355
8.8.3 Function strpbrk 355
8.8.4 Function strrchr 356

xii Contents

8.8.5 Function strspn 357
8.8.6 Function strstr 357
8.8.7 Function strtok 358

8.9 Memory Functions of the String-Handling Library 359
8.9.1 Function memcpy 360
8.9.2 Function memmove 361
8.9.3 Function memcmp 362
8.9.4 Function memchr 362
8.9.5 Function memset 363

8.10 Other Functions of the String-Handling Library 363
8.10.1 Function strerror 364
8.10.2 Function strlen 364

8.11 Secure C Programming 365

9 C Formatted Input/Output 377
9.1 Introduction 378
9.2 Streams 378
9.3 Formatting Output with printf 378
9.4 Printing Integers 379
9.5 Printing Floating-Point Numbers 380

9.5.1 Conversion Specifiers e, E and f 381
9.5.2 Conversion Specifiers g and G 381
9.5.3 Demonstrating Floating-Point Conversion Specifiers 382

9.6 Printing Strings and Characters 382
9.7 Other Conversion Specifiers 383
9.8 Printing with Field Widths and Precision 384

9.8.1 Specifying Field Widths for Printing Integers 384
9.8.2 Specifying Precisions for Integers, Floating-Point Numbers

and Strings 385
9.8.3 Combining Field Widths and Precisions 386

9.9 Using Flags in the printf Format Control String 387
9.9.1 Right and Left Justification 387
9.9.2 Printing Positive and Negative Numbers with and without

the + Flag 388
9.9.3 Using the Space Flag 388
9.9.4 Using the # Flag 389
9.9.5 Using the 0 Flag 389

9.10 Printing Literals and Escape Sequences 390
9.11 Reading Formatted Input with scanf 390

9.11.1 scanf Syntax 391
9.11.2 scanf Conversion Specifiers 391
9.11.3 Reading Integers with scanf 392
9.11.4 Reading Floating-Point Numbers with scanf 393
9.11.5 Reading Characters and Strings with scanf 393
9.11.6 Using Scan Sets with scanf 394

Contents xiii

9.11.7 Using Field Widths with scanf 395
9.11.8 Skipping Characters in an Input Stream 396

9.12 Secure C Programming 397

10 C Structures, Unions, Bit Manipulation and
Enumerations 404

10.1 Introduction 405
10.2 Structure Definitions 405

10.2.1 Self-Referential Structures 406
10.2.2 Defining Variables of Structure Types 407
10.2.3 Structure Tag Names 407
10.2.4 Operations That Can Be Performed on Structures 407

10.3 Initializing Structures 408
10.4 Accessing Structure Members with . and -> 408
10.5 Using Structures with Functions 410
10.6 typedef 411
10.7 Example: High-Performance Card Shuffling and Dealing Simulation 411
10.8 Unions 414

10.8.1 Union Declarations 414
10.8.2 Operations That Can Be Performed on Unions 415
10.8.3 Initializing Unions in Declarations 415
10.8.4 Demonstrating Unions 415

10.9 Bitwise Operators 416
10.9.1 Displaying an Unsigned Integer in Bits 417
10.9.2 Making Function displayBits More Generic and Portable 419
10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and

Complement Operators 420
10.9.4 Using the Bitwise Left- and Right-Shift Operators 423
10.9.5 Bitwise Assignment Operators 424

10.10 Bit Fields 425
10.10.1 Defining Bit Fields 425
10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 426
10.10.3 Unnamed Bit Fields 428

10.11 Enumeration Constants 428
10.12 Anonymous Structures and Unions 430
10.13 Secure C Programming 430

11 C File Processing 441
11.1 Introduction 442
11.2 Files and Streams 442
11.3 Creating a Sequential-Access File 443

11.3.1 Pointer to a FILE 445
11.3.2 Using fopen to Open the File 445
11.3.3 Using feof to Check for the End-of-File Indicator 445

xiv Contents

11.3.4 Using fprintf to Write to the File 446
11.3.5 Using fclose to Close the File 446
11.3.6 File Open Modes 447

11.4 Reading Data from a Sequential-Access File 449
11.4.1 Resetting the File Position Pointer 450
11.4.2 Credit Inquiry Program 450

11.5 Random-Access Files 454
11.6 Creating a Random-Access File 454
11.7 Writing Data Randomly to a Random-Access File 456

11.7.1 Positioning the File Position Pointer with fseek 458
11.7.2 Error Checking 459

11.8 Reading Data from a Random-Access File 459
11.9 Case Study: Transaction-Processing Program 461
11.10 Secure C Programming 466

12 C Data Structures 477
12.1 Introduction 478
12.2 Self-Referential Structures 479
12.3 Dynamic Memory Allocation 479
12.4 Linked Lists 480

12.4.1 Function insert 486
12.4.2 Function delete 487
12.4.3 Function printList 489

12.5 Stacks 489
12.5.1 Function push 493
12.5.2 Function pop 494
12.5.3 Applications of Stacks 494

12.6 Queues 495
12.6.1 Function enqueue 499
12.6.2 Function dequeue 500

12.7 Trees 501
12.7.1 Function insertNode 504
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 505
12.7.3 Duplicate Elimination 506
12.7.4 Binary Tree Search 506
12.7.5 Other Binary Tree Operations 506

12.8 Secure C Programming 506

13 C Preprocessor 518
13.1 Introduction 519
13.2 #include Preprocessor Directive 519
13.3 #define Preprocessor Directive: Symbolic Constants 520
13.4 #define Preprocessor Directive: Macros 521

13.4.1 Macro with One Argument 521

Contents xv

13.4.2 Macro with Two Arguments 522
13.4.3 Macro Continuation Character 522
13.4.4 #undef Preprocessor Directive 522
13.4.5 Standard Library Functions and Macros 522
13.4.6 Do Not Place Expressions with Side Effects in Macros 523

13.5 Conditional Compilation 523
13.5.1 #if…#endif Preprocessor Directive 523
13.5.2 Commenting Out Blocks of Code with #if…#endif 523
13.5.3 Conditionally Compiling Debugging Code 524

13.6 #error and #pragma Preprocessor Directives 524
13.7 # and ## Operators 524
13.8 Line Numbers 525
13.9 Predefined Symbolic Constants 525
13.10 Assertions 526
13.11 Secure C Programming 526

14 Other C Topics 531
14.1 Introduction 532
14.2 Redirecting I/O 532

14.2.1 Redirecting Input with < 532
14.2.2 Redirecting Input with | 533
14.2.3 Redirecting Output 533

14.3 Variable-Length Argument Lists 533
14.4 Using Command-Line Arguments 535
14.5 Compiling Multiple-Source-File Programs 537

14.5.1 extern Declarations for Global Variables in Other Files 537
14.5.2 Function Prototypes 537
14.5.3 Restricting Scope with static 538
14.5.4 Makefiles 538

14.6 Program Termination with exit and atexit 538
14.7 Suffixes for Integer and Floating-Point Literals 540
14.8 Signal Handling 540
14.9 Dynamic Memory Allocation: Functions calloc and realloc 543
14.10 Unconditional Branching with goto 543

15 C++ as a Better C; Introducing Object
Technology 549

15.1 Introduction 550
15.2 C++ 550
15.3 A Simple Program: Adding Two Integers 551

15.3.1 Addition Program in C++ 551
15.3.2 <iostream> Header 552
15.3.3 main Function 552
15.3.4 Variable Declarations 552

xvi Contents

15.3.5 Standard Output Stream and Standard Input Stream Objects 552
15.3.6 std::endl Stream Manipulator 553
15.3.7 std:: Explained 553
15.3.8 Concatenated Stream Outputs 553
15.3.9 return Statement Not Required in main 553
15.3.10 Operator Overloading 553

15.4 C++ Standard Library 554
15.5 Header Files 554
15.6 Inline Functions 556
15.7 C++ Keywords 558
15.8 References and Reference Parameters 559

15.8.1 Reference Parameters 559
15.8.2 Passing Arguments by Value and by Reference 560
15.8.3 References as Aliases within a Function 562
15.8.4 Returning a Reference from a Function 563
15.8.5 Error Messages for Uninitialized References 564

15.9 Empty Parameter Lists 564
15.10 Default Arguments 564
15.11 Unary Scope Resolution Operator 566
15.12 Function Overloading 567
15.13 Function Templates 570

15.13.1 Defining a Function Template 570
15.13.2 Using a Function Template 571

15.14 Introduction to Object Technology and the UML 573
15.14.1 Basic Object Technology Concepts 573
15.14.2 Classes, Data Members and Member Functions 574
15.14.3 Object-Oriented Analysis and Design 575
15.14.4 The Unified Modeling Language 576

15.15 Introduction to C++ Standard Library Class Template vector 576
15.15.1 Problems Associated with C-Style Pointer-Based Arrays 576
15.15.2 Using Class Template vector 577
15.15.3 Exception Handling: Processing an Out-of-Range Index 581

15.16 Wrap-Up 583

16 Introduction to Classes, Objects and Strings 589
16.1 Introduction 590
16.2 Defining a Class with a Member Function 590
16.3 Defining a Member Function with a Parameter 593
16.4 Data Members, set Member Functions and get Member Functions 597
16.5 Initializing Objects with Constructors 602
16.6 Placing a Class in a Separate File for Reusability 606
16.7 Separating Interface from Implementation 610
16.8 Validating Data with set Functions 615
16.9 Wrap-Up 620

Contents xvii

17 Classes: A Deeper Look; Throwing Exceptions 627
17.1 Introduction 628
17.2 Time Class Case Study 629
17.3 Class Scope and Accessing Class Members 635
17.4 Access Functions and Utility Functions 636
17.5 Time Class Case Study: Constructors with Default Arguments 637
17.6 Destructors 643
17.7 When Constructors and Destructors Are Called 643
17.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a

Pointer to a private Data Member 647
17.9 Default Memberwise Assignment 650
17.10 const Objects and const Member Functions 652
17.11 Composition: Objects as Members of Classes 654
17.12 friend Functions and friend Classes 660
17.13 Using the this Pointer 662
17.14 static Class Members 668
17.15 Wrap-Up 673

18 Operator Overloading; Class string 683
18.1 Introduction 684
18.2 Using the Overloaded Operators of Standard Library Class string 685
18.3 Fundamentals of Operator Overloading 688
18.4 Overloading Binary Operators 689
18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 690
18.6 Overloading Unary Operators 694
18.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 695
18.8 Case Study: A Date Class 696
18.9 Dynamic Memory Management 701
18.10 Case Study: Array Class 703

18.10.1 Using the Array Class 704
18.10.2 Array Class Definition 708

18.11 Operators as Member vs. Non-Member Functions 716
18.12 Converting Between Types 716
18.13 explicit Constructors and Conversion Operators 718
18.14 Overloading the Function Call Operator () 720
18.15 Wrap-Up 721

19 Object-Oriented Programming: Inheritance 732
19.1 Introduction 733
19.2 Base Classes and Derived Classes 733
19.3 Relationship between Base and Derived Classes 736

19.3.1 Creating and Using a CommissionEmployee Class 736
19.3.2 Creating a BasePlusCommissionEmployee Class Without

Using Inheritance 741

xviii Contents

19.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy 747

19.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data 751

19.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using private Data 754

19.4 Constructors and Destructors in Derived Classes 759
19.5 public, protected and private Inheritance 761
19.6 Software Engineering with Inheritance 762
19.7 Wrap-Up 762

20 Object-Oriented Programming: Polymorphism 767
20.1 Introduction 768
20.2 Introduction to Polymorphism: Polymorphic Video Game 769
20.3 Relationships Among Objects in an Inheritance Hierarchy 769

20.3.1 Invoking Base-Class Functions from Derived-Class Objects 770
20.3.2 Aiming Derived-Class Pointers at Base-Class Objects 773
20.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 774
20.3.4 Virtual Functions and Virtual Destructors 776

20.4 Type Fields and switch Statements 783
20.5 Abstract Classes and Pure virtual Functions 783
20.6 Case Study: Payroll System Using Polymorphism 785

20.6.1 Creating Abstract Base Class Employee 786
20.6.2 Creating Concrete Derived Class SalariedEmployee 790
20.6.3 Creating Concrete Derived Class CommissionEmployee 792
20.6.4 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 794
20.6.5 Demonstrating Polymorphic Processing 796

20.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 800

20.8 Case Study: Payroll System Using Polymorphism and Runtime Type
Information with Downcasting, dynamic_cast, typeid and type_info 803

20.9 Wrap-Up 807

21 Stream Input/Output: A Deeper Look 812
21.1 Introduction 813
21.2 Streams 814

21.2.1 Classic Streams vs. Standard Streams 814
21.2.2 iostream Library Headers 815
21.2.3 Stream Input/Output Classes and Objects 815

21.3 Stream Output 817
21.3.1 Output of char * Variables 818
21.3.2 Character Output Using Member Function put 818

21.4 Stream Input 819
21.4.1 get and getline Member Functions 819

Contents xix

21.4.2 istream Member Functions peek, putback and ignore 822
21.4.3 Type-Safe I/O 822

21.5 Unformatted I/O Using read, write and gcount 822
21.6 Introduction to Stream Manipulators 823

21.6.1 Integral Stream Base: dec, oct, hex and setbase 824
21.6.2 Floating-Point Precision (precision, setprecision) 824
21.6.3 Field Width (width, setw) 826
21.6.4 User-Defined Output Stream Manipulators 827

21.7 Stream Format States and Stream Manipulators 828
21.7.1 Trailing Zeros and Decimal Points (showpoint) 829
21.7.2 Justification (left, right and internal) 830
21.7.3 Padding (fill, setfill) 832
21.7.4 Integral Stream Base (dec, oct, hex, showbase) 833
21.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(scientific, fixed) 834
21.7.6 Uppercase/Lowercase Control (uppercase) 835
21.7.7 Specifying Boolean Format (boolalpha) 835
21.7.8 Setting and Resetting the Format State via Member F

unction flags 836
21.8 Stream Error States 837
21.9 Tying an Output Stream to an Input Stream 840
21.10 Wrap-Up 840

22 Exception Handling: A Deeper Look 849
22.1 Introduction 850
22.2 Example: Handling an Attempt to Divide by Zero 850
22.3 Rethrowing an Exception 856
22.4 Stack Unwinding 857
22.5 When to Use Exception Handling 859
22.6 Constructors, Destructors and Exception Handling 860
22.7 Exceptions and Inheritance 861
22.8 Processing new Failures 861
22.9 Class unique_ptr and Dynamic Memory Allocation 864
22.10 Standard Library Exception Hierarchy 867
22.11 Wrap-Up 868

23 Introduction to Custom Templates 874
23.1 Introduction 875
23.2 Class Templates 875
23.3 Function Template to Manipulate a Class-Template Specialization Object 880
23.4 Nontype Parameters 882
23.5 Default Arguments for Template Type Parameters 882
23.6 Overloading Function Templates 883
23.7 Wrap-Up 883

xx Contents

A C and C++ Operator Precedence Charts 886

B ASCII Character Set 890

C Number Systems 891
C.1 Introduction 892
C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 895
C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 896
C.4 Converting from Binary, Octal or Hexadecimal to Decimal 896
C.5 Converting from Decimal to Binary, Octal or Hexadecimal 897
C.6 Negative Binary Numbers: Two’s Complement Notation 899

D Sorting: A Deeper Look 904
D.1 Introduction 905
D.2 Big O Notation 905
D.3 Selection Sort 906
D.4 Insertion Sort 910
D.5 Merge Sort 913

E Multithreading and Other C11 and C99 Topics 924
E.1 Introduction 925
E.2 New C99 Headers 926
E.3 Designated Initializers and Compound Literals 927
E.4 Type bool 929
E.5 Implicit int in Function Declarations 931
E.6 Complex Numbers 932
E.7 Additions to the Preprocessor 933
E.8 Other C99 Features 934

E.8.1 Compiler Minimum Resource Limits 934
E.8.2 The restrict Keyword 935
E.8.3 Reliable Integer Division 935
E.8.4 Flexible Array Members 935
E.8.5 Relaxed Constraints on Aggregate Initialization 936
E.8.6 Type Generic Math 936
E.8.7 Inline Functions 936
E.8.8 Return Without Expression 937
E.8.9 __func__ Predefined Identifier 937
E.8.10 va_copy Macro 937

E.9 New Features in the C11 Standard 937
E.9.1 New C11 Headers 938
E.9.2 Multithreading Support 938

Contents xxi

E.9.3 quick_exit function 946
E.9.4 Unicode® Support 946
E.9.5 _Noreturn Function Specifier 946
E.9.6 Type-Generic Expressions 946
E.9.7 Annex L: Analyzability and Undefined Behavior 947
E.9.8 Memory Alignment Control 947
E.9.9 Static Assertions 947
E.9.10 Floating-Point Types 948

E.10 Web Resources 948

Appendices on the Web 951

Index 952

Appendices F, G and H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

F Using the Visual Studio Debugger

G Using the GNU gdb Debugger

H Using the Xcode Debugger

This page intentionally left blank

Welcome to the C programming language and to C How to Program, Eighth Edition! This
book presents leading-edge computing technologies for college students, instructors and
software-development professionals.

At the heart of the book is the Deitel signature “live-code approach”—we present con-
cepts in the context of complete working programs, rather than in code snippets. Each
code example is followed by one or more sample executions. Read the online Before You
Begin section at

to learn how to set up your computer to run the hundreds of code examples. All the source
code is available at

and

Use the source code we provide to run every program as you study it.
We believe that this book and its support materials will give you an informative, chal-

lenging and entertaining introduction to C. As you read the book, if you have questions,
send an e-mail to deitel@deitel.com—we’ll respond promptly. For book updates, visit
www.deitel.com/books/chtp8/, join our social media communities:

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Google+™—http://google.com/+DeitelFan

and register for the Deitel® Buzz Online e-mail newsletter at:

New and Updated Features
Here are some key features of C How to Program, 8/e:

• Integrated More Capabilities of the C11 and C99 standards. Support for the C11
and C99 standards varies by compiler. Microsoft Visual C++ supports a subset of
the features that were added to C in C99 and C11—primarily the features that
are also required by the C++ standard. We incorporated several widely supported
C11 and C99 features into the book’s early chapters, as appropriate for introduc-

http://www.deitel.com/books/chtp8/chtp8_BYB.pdf

http://www.deitel.com/books/chtp8

http://www.pearsonhighered.com/deitel

http://www.deitel.com/newsletter/subscribe.html

Preface

xxiv Preface

tory courses and for the compilers we used in this book. Appendix E, Multi-
threading and Other C11 and C99 Topics, presents more advanced features
(such as multithreading for today’s increasingly popular multi-core architectures)
and various other features that are not widely supported by today’s C compilers.

• All Code Tested on Linux, Windows and OS X. We retested all the example and
exercise code using GNU gcc on Linux, Visual C++ on Windows (in Visual Stu-
dio 2013 Community Edition) and LLVM in Xcode on OS X.

• Updated Chapter 1. The new Chapter 1 engages students with updated intrigu-
ing facts and figures to get them excited about studying computers and computer
programming. The chapter includes current technology trends and hardware dis-
cussions, the data hierarchy, social networking and a table of business and tech-
nology publications and websites that will help you stay up to date with the latest
technology news and trends. We’ve included updated test-drives that show how
to run a command-line C program on Linux, Microsoft Windows and OS X. We
also updated the discussions of the Internet and web, and the introduction to ob-
ject technology.

• Updated Coverage of C++ and Object-Oriented Programming. We updated
Chapters 15–23 on object-oriented programming in C++ with material from our
textbook C++ How to Program, 9/e, which is up-to-date with the C++11 standard.

• Updated Code Style. We removed the spacing inside parentheses and square
brackets, and toned down our use of comments a bit. We also added parentheses
to certain compound conditions for clarity.

• Variable Declarations. Because of improved compiler support, we were able to
move variable declarations closer to where they’re first used and define for-loop
counter-control variables in each for’s initialization section.

• Summary Bullets. We removed the end-of-chapter terminology lists and updated
the detailed section-by-section, bullet-list summaries with bolded key terms and,
for most, page references to their defining occurrences.

• Use of Standard Terminology. To help students prepare to work in industry
worldwide, we audited the book against the C standard and upgraded our termi-
nology to use C standard terms in preference to general programming terms.

• Online Debugger Appendices. We’ve updated the online GNU gdb and Visual
C++® debugging appendices, and added an Xcode® debugging appendix.

• Additional Exercises. We updated various exercises and added some new ones,
including one for the Fisher-Yates unbiased shuffling algorithm in Chapter 10.

Other Features
Other features of C How to Program, 8/e include:

• Secure C Programming Sections. Many of the C chapters end with a Secure C
Programming Section. We’ve also posted a Secure C Programming Resource
Center at www.deitel.com/SecureC/. For more details, see the section “A Note
About Secure C Programming” on the next page.

 A Note About Secure C Programming xxv

• Focus on Performance Issues. C (and C++) are favored by designers of performance-
intensive systems such as operating systems, real-time systems, embedded systems
and communications systems, so we focus intensively on performance issues.

• “Making a Difference” Contemporary Exercises. We encourage you to use com-
puters and the Internet to research and solve significant problems. These exercises
are meant to increase awareness of important issues the world is facing. We hope
you’ll approach them with your own values, politics and beliefs.

• Sorting: A Deeper Look. Sorting places data in order, based on one or more sort
keys. We begin our sorting presentation in Chapter 6 with a simple algorithm—
in Appendix D, we present a deeper look. We consider several algorithms and
compare them with regard to their memory consumption and processor de-
mands. For this purpose, we present a friendly introduction to Big O notation,
which indicates how hard an algorithm may have to work to solve a problem.
Through examples and exercises, Appendix D discusses the selection sort, inser-
tion sort, recursive merge sort, recursive selection sort, bucket sort and recursive
Quicksort. Sorting is an intriguing problem because different sorting techniques
achieve the same final result but they can vary hugely in their consumption of
memory, CPU time and other system resources.

• Titled Programming Exercises. Most of the programming exercises are titled to
help instructors conveniently choose assignments appropriate for their students.

• Order of Evaluation. We caution the reader about subtle order of evaluation issues.

• C++-Style // Comments. We use the newer, more concise C++-style // com-
ments in preference to C’s older style /*...*/ comments.

A Note About Secure C Programming
Throughout this book, we focus on C programming fundamentals. When we write each
How to Program book, we search the corresponding language’s standards document for the
features that we feel novices need to learn in a first programming course, and features that
professional programmers need to know to begin working in that language. We also cover
computer-science and software-engineering fundamentals for novices—our core audience.

Industrial-strength coding techniques in any programming language are beyond the
scope of an introductory textbook. For that reason, our Secure C Programming sections
present some key issues and techniques, and provide links and references so you can con-
tinue learning.

Experience has shown that it’s difficult to build industrial-strength systems that stand
up to attacks from viruses, worms, etc. Today, via the Internet, such attacks can be instan-
taneous and global in scope. Software vulnerabilities often come from simple program-
ming issues. Building security into software from the start of the development cycle can
greatly reduce costs and vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—pub-
lishes and promotes secure coding standards to help C programmers and others implement
industrial-strength systems that avoid the programming practices that leave systems vul-
nerable to attacks. The CERT standards evolve as new security issues arise.

xxvi Preface

We’ve upgraded our code (as appropriate for an introductory book) to conform to var-
ious CERT recommendations. If you’ll be building C systems in industry, consider reading
The CERT C Secure Coding Standard, 2/e (Robert Seacord, Addison-Wesley Professional,
2014) and Secure Coding in C and C++, 2/e (Robert Seacord, Addison-Wesley Professional,
2013). The CERT guidelines are available free online at

Mr. Seacord, a technical reviewer for the C portion of the last edition of this book, provided
specific recommendations on each of our Secure C Programming sections. Mr. Seacord is
the Secure Coding Manager at CERT at Carnegie Mellon University’s Software Engineering
Institute (SEI) and an adjunct professor in the Carnegie Mellon University School of Com-
puter Science.

The Secure C Programming sections at the ends of Chapters 2–13 discuss many impor-
tant topics, including:

Web-Based Materials
The book’s open access Companion Website (http://www.pearsonhighered.com/deitel)
contains source code for all the code examples and the following appendices in PDF format:

• Appendix F, Using the Visual Studio Debugger

• Appendix G, Using the GNU gdb Debugger

• Appendix H, Using the Xcode Debugger

Dependency Charts
Figures 1 and 2 on the next two pages show the dependencies among the chapters to help
instructors plan their syllabi. C How to Program, 8/e is appropriate for CS1 and many CS2
courses, and for intermediate-level C and C++ programming courses. The C++ part of the
book assumes that you’ve studied C Chapters 1–10.

Teaching Approach
C How to Program, 8/e, contains a rich collection of examples. We focus on good software
engineering, program clarity, preventing common errors, program portability and perfor-
mance issues.

https://www.securecoding.cert.org/confluence/display/seccode/

CERT+C+Coding+Standard

• testing for arithmetic overflows
• using unsigned integer types
• the more secure functions in the C

standard’s Annex K
• the importance of checking the sta-

tus information returned by stan-
dard-library functions

• range checking
• secure random-number generation
• array bounds checking

• preventing buffer overflows
• input validation
• avoiding undefined behaviors
• choosing functions that return

status information vs. using similar
functions that do not

• ensuring that pointers are always
NULL or contain valid addresses

• using C functions vs. using prepro-
cessor macros, and more.

 Teaching Approach xxvii

Syntax Shading. For readability, we syntax shade the code, similar to the way most IDEs
and code editors syntax color code. Our syntax-shading conventions are:

Fig. 1 | C chapter dependency chart.

comments appear like this in gray

keywords appear like this in dark blue
constants and literal values appear like this in light blue

all other code appears in black

Arrays, Pointers
 and Strings

Introduction
1 Introduction to Computers,

the Internet and the Web

Intro to Programming
2 Intro to C Programming

Control Statements
and Functions
3 Structured Program

Development in C

4 C Program Control

5 C Functions

6 C Arrays

8 C Characters and Strings

7 C Pointers

5.14–5.16 Recursion

12 C Data Structures

D Sorting: A Deeper Look

Data Structures

Other Topics, Multithreading
and the C11 Standard

C Chapter
Dependency
Chart
[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

E Multithreading and Other
C11 and C99 Topics

10 C Structures, Unions, Bit
Manipulation and Enumerations

Aggregate Types

Streams and Files

11 C File Processing

9 C Formatted Input/Output

13 C Preprocessor 14 Other C Topics

xxviii Preface

Code Highlighting. We place gray rectangles around the key code in each program.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold colored text for easy reference. We emphasize C program text
in the Lucida font (for example, int x = 5;).

Objectives. Each chapter begins with a list of objectives.

Illustrations/Figures. Abundant flowcharts, tables, line drawings, UML diagrams (in the
C++ chapters), programs and program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and teaching experience.

Fig. 2 | C++ chapter dependency chart.

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs and
for avoiding bugs in the first place.

Object-Based
Programming

C++ Chapter
Dependency
Chart

17 Classes: A Deeper Look;
Throwing Exceptions

18 Operator Overloading;
Class string

Object-Oriented
Programming

22 Exception Handling:
A Deeper Look

19 OOP: Inheritance

21 Stream
Input/Output

20 OOP:
Polymorphism

23 Intro to Custom
Templates

15 C++ as a Better C;
Intro to Object Technology

16 Intro to Classes and Objects

 Software Used in C How to Program, 8/e xxix

Summary Bullets. We present a detailed section-by-section, bullet-list summary of each
chapter with bolded key terms. For easy reference, most of the key terms are followed by
the page number of their defining occurrences.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.

Exercises. Each chapter concludes with a substantial set of exercises including:

• simple recall of important terminology and concepts

• identifying the errors in code samples

• writing individual program statements

• writing small portions of C functions (and C++ member functions and classes)

• writing complete programs

• implementing major projects

Index. We’ve included an extensive index, which is especially helpful when you use the
book as a reference. Defining occurrences of key terms are highlighted in the index with a
bold colored page number.

Software Used in C How to Program, 8/e
We tested the programs in C How to Program, 8/e using the following free compilers:

• GNU C and C++ (http://gcc.gnu.org/install/binaries.html), which are al-
ready installed on most Linux systems and can be installed on OS X and Windows
systems.

• Microsoft’s Visual C++ in Visual Studio 2013 Community edition, which you
can download from http://go.microsoft.com/?linkid=9863608

• LLVM in Apple’s Xcode IDE, which OS X users can download from the Mac
App Store.

For other free C and C++ compilers, visit:

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

http://www.thefreecountry.com/compilers/cpp.shtml

http://www.compilers.net/Dir/Compilers/CCpp.htm
http://www.freebyte.com/programming/cpp/#cppcompilers

http://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers

xxx Preface

CourseSmart Web Books
Today’s students and instructors have increasing demands on their time and money. Pearson
has responded to that need by offering various digital texts and course materials online
through CourseSmart. Faculty can review course materials online, saving time and costs. It
offers students a high-quality digital version of the text for less than the cost of a print copy.
Students receive the same content offered in the print textbook enhanced by search, note-
taking and printing tools. For more information, visit http://www.coursesmart.com.

Instructor Resources
The following supplements are available to qualified instructors only through Pearson Educa-
tion’s password-protected Instructor Resource Center (www.pearsonhighered.com/irc):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Test Item File of multiple-choice questions (approximately two per top-level book
section)

• Solutions Manual with solutions to most (but not all) of the end-of-chapter exer-
cises. Please check the Instructor Resource Center to determine which exercises
have solutions.

Please do not write to us requesting access to the Instructor Resource Center. Access is
restricted to college instructors teaching from the book. Instructors may obtain access
only through their Pearson representatives. If you’re not a registered faculty member, con-
tact your Pearson representative or visit http://www.pearsonhighered.com/replocator/.

Solutions are not provided for “project” exercises. Check out our Programming Proj-
ects Resource Center for lots of additional exercise and project possibilities (http://
www.deitel.com/ProgrammingProjects/).

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
Abbey co-authored Chapter 1. We’re fortunate to have worked with the dedicated team
of publishing professionals at Pearson. We appreciate the guidance, savvy and energy of
Tracy Johnson, Executive Editor, Computer Science. Kelsey Loanes and Bob Engelhardt
did a marvelous job managing the review and production processes, respectively.

C How to Program, 8/e Reviewers
We wish to acknowledge the efforts of our reviewers. Under tight deadlines, they scrutinized
the text and the programs and provided countless suggestions for improving the presenta-
tion: Dr. Brandon Invergo (GNU/European Bioinformatics Institute), Danny Kalev (A
Certified System Analyst, C Expert and Former Member of the C++ Standards Committee),
Jim Hogg (Program Manager, C/C++ Compiler Team, Microsoft Corporation), José Anto-
nio González Seco (Parliament of Andalusia), Sebnem Onsay (Special Instructor, Oakland
University School of Engineering and Computer Science), Alan Bunning (Purdue Universi-
ty), Paul Clingan (Ohio State University), Michael Geiger (University of Massachusetts,
Lowell), Jeonghwa Lee (Shippensburg University), Susan Mengel (Texas Tech University),
Judith O'Rourke (SUNY at Albany) and Chen-Chi Shin (Radford University).

 A Special Thank You to Brandon Invergo and Jim Hogg xxxi

Other Recent Editions Reviewers
William Albrecht (University of South Florida), Ian Barland (Radford University), Ed
James Beckham (Altera), John Benito (Blue Pilot Consulting, Inc. and Convener of ISO
WG14—the Working Group responsible for the C Programming Language Standard),
Dr. John F. Doyle (Indiana University Southeast), Alireza Fazelpour (Palm Beach Com-
munity College), Mahesh Hariharan (Microsoft), Hemanth H.M. (Software Engineer at
SonicWALL), Kevin Mark Jones (Hewlett Packard), Lawrence Jones, (UGS Corp.), Don
Kostuch (Independent Consultant), Vytautus Leonavicius (Microsoft), Xiaolong Li (Indi-
ana State University), William Mike Miller (Edison Design Group, Inc.), Tom Rethard
(The University of Texas at Arlington), Robert Seacord (Secure Coding Manager at SEI/
CERT, author of The CERT C Secure Coding Standard and technical expert for the inter-
national standardization working group for the programming language C), José Antonio
González Seco (Parliament of Andalusia), Benjamin Seyfarth (University of Southern Mis-
sissippi), Gary Sibbitts (St. Louis Community College at Meramec), William Smith (Tul-
sa Community College) and Douglas Walls (Senior Staff Engineer, C compiler, Sun
Microsystems—now part of Oracle).

A Special Thank You to Brandon Invergo and Jim Hogg
We were privileged to have Brandon Invergo (GNU/European Bioinformatics Institute)
and Jim Hogg (Program Manager, C/C++ Compiler Team, Microsoft Corporation) do full-
book reviews. They scrutinized the C portion of the book, providing numerous insights
and constructive comments. The largest part of our audience uses either the GNU gcc
compiler or Microsoft’s Visual C++ compiler (which also compiles C). Brandon and Jim
helped us ensure that our content was accurate for the GNU and Microsoft compilers, re-
spectively. Their comments conveyed a love of software engineering, computer science
and education that we share.

Well, there you have it! C is a powerful programming language that will help you
write high-performance, portable programs quickly and effectively. It scales nicely into the
realm of enterprise systems development to help organizations build their business-critical
and mission-critical information systems. As you read the book, we would sincerely appre-
ciate your comments, criticisms, corrections and suggestions for improving the text. Please
address all correspondence—including questions—to:

We’ll respond promptly, and post corrections and clarifications on:

We hope you enjoy working with C How to Program, Eighth Edition as much as we enjoyed
writing it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,

deitel@deitel.com

www.deitel.com/books/chtp8/

xxxii Preface

he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Lucent Technologies, Fidelity, NASA at the Ken-
nedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range,
Hospital Sisters Health System, Rogue Wave Software, Boeing, SunGard Higher Educa-
tion, Stratus, Cambridge Technology Partners, One Wave, Hyperion Software, Adra Sys-
tems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, Invensys and many
more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 54 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in electrical engineering from MIT and a Ph.D. in mathematics from Boston Uni-
versity (all with a focus on computing). He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science Department
at Boston College before founding Deitel & Associates in 1991 with his son, Paul Deitel.
The Deitels’ publications have earned international recognition, with translations published
in Chinese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian, Portu-
guese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming courses
to academic institutions, major corporations, government organizations and the military.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including C, C++, Java™, Android app develop-
ment, Swift™ and iOS® app development, Visual C#®, Visual Basic®, Visual C++®, Py-
thon®, object technology, Internet and web programming and a growing list of additional
programming and software development courses.

Through its 40-year publishing partnership with Pearson/Prentice Hall, Deitel & Asso-
ciates, Inc., publishes leading-edge programming textbooks and professional books in print
and popular e-book formats, and LiveLessons video courses (available on Safari Books Online
and other video platforms). Deitel & Associates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum deliv-
ered to groups of software engineers at client sites worldwide, visit:

To request a proposal for on-site, instructor-led training at your organization, e-mail
deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

1Introduction to Computers,
the Internet and the Web

O b j e c t i v e s
In this chapter, you’ll learn:

■ Basic computer concepts.

■ The different types of
programming languages.

■ The history of the C
programming language.

■ The purpose of the C
Standard Library.

■ The basics of object
technology.

■ A typical C program-
development environment.

■ To test-drive a C application
in Windows, Linux and Mac
OS X.

■ Some basics of the Internet
and the World Wide Web.

2 Chapter 1 Introduction to Computers, the Internet and the Web

1.1 Introduction
Welcome to C and C++! C is a concise yet powerful computer programming language
that’s appropriate for technically oriented people with little or no programming experience
and for experienced programmers to use in building substantial software systems. C How
to Program, Eighth Edition, is an effective learning tool for each of these audiences.

The core of the book emphasizes software engineering through the proven methodol-
ogies of structured programming in C and object-oriented programming in C++. The book
presents hundreds of complete working programs and shows the outputs produced when
those programs are run on a computer. We call this the “live-code approach.” All of these
example programs may be downloaded from our website www.deitel.com/books/chtp8/.

Most people are familiar with the exciting tasks that computers perform. Using this
textbook, you’ll learn how to command computers to perform those tasks. It’s software
(i.e., the instructions you write to command computers to perform actions and make deci-
sions) that controls computers (often referred to as hardware).

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level Languages
1.5 The C Programming Language
1.6 C Standard Library
1.7 C++ and Other C-Based Languages
1.8 Object Technology

1.8.1 The Automobile as an Object
1.8.2 Methods and Classes
1.8.3 Instantiation
1.8.4 Reuse
1.8.5 Messages and Method Calls
1.8.6 Attributes and Instance Variables
1.8.7 Encapsulation and Information Hiding
1.8.8 Inheritance

1.9 Typical C Program-Development
Environment

1.9.1 Phase 1: Creating a Program
1.9.2 Phases 2 and 3: Preprocessing and

Compiling a C Program
1.9.3 Phase 4: Linking
1.9.4 Phase 5: Loading
1.9.5 Phase 6: Execution
1.9.6 Problems That May Occur at

Execution Time

1.9.7 Standard Input, Standard Output and
Standard Error Streams

1.10 Test-Driving a C Application in
Windows, Linux and Mac OS X

1.10.1 Running a C Application from the
Windows Command Prompt

1.10.2 Running a C Application Using GNU
C with Linux

1.10.3 Running a C Application Using the
Teminal on Mac OS X

1.11 Operating Systems
1.11.1 Windows—A Proprietary Operating

System
1.11.2 Linux—An Open-Source Operating

System
1.11.3 Apple’s Mac OS X; Apple’s iOS for

iPhone®, iPad® and iPod Touch®
Devices

1.11.4 Google’s Android
1.12 The Internet and World Wide Web

1.12.1 The Internet: A Network of Networks
1.12.2 The World Wide Web: Making the

Internet User-Friendly
1.12.3 Web Services
1.12.4 Ajax
1.12.5 The Internet of Things

1.13 Some Key Software Terminology
1.14 Keeping Up-to-Date with

Information Technologies

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1.2 Hardware and Software 3

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!1 To put that in perspective, the
Tianhe-2 supercomputer can perform in one second about 3 million calculations for every per-
son on the planet! And supercomputing “upper limits” are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs. These software programs guide the computer through ordered actions
specified by people called computer programmers.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software tech-
nologies. Computers that might have filled large rooms and cost millions of dollars
decades ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a
few dollars each. Ironically, silicon is one of the most abundant materials on Earth—it’s
an ingredient in common sand. Silicon-chip technology has made computing so econom-
ical that computers have become a commodity.

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs,
the amount of secondary storage (such as disk storage) they have to hold programs and
data over longer periods of time, and their processor speeds—the speeds at which they exe-
cute their programs (i.e., do their work).

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1. http://www.top500.org.

4 Chapter 1 Introduction to Computers, the Internet and the Web

1.2.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.1).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for process-
ing. Most user input is entered into computers through keyboards, touch
screens and mouse devices. Other forms of input include receiving voice com-
mands, scanning images and barcodes, reading from secondary storage devices
(such as hard drives, DVD drives, Blu-ray Disc™ drives and USB flash
drives—also called “thumb drives” or “memory sticks”), receiving video from a
webcam and having your computer receive information from the Internet (such
as when you stream videos from YouTube® or download e-books from Ama-
zon). Newer forms of input include position data from a GPS device, and
motion and orientation information from an accelerometer (a device that
responds to up/down, left/right and forward/backward acceleration) in a smart-
phone or game controller (such as Microsoft® Kinect® for Xbox®, Wii™
Remote and Sony® PlayStation® Move).

Output unit This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside the com-
puter. Most information that’s output from computers today is displayed on
screens (including touch screens), printed on paper (“going green” discourages
this), played as audio or video on PCs and media players (such as Apple’s iPods)
and giant screens in sports stadiums, transmitted over the Internet or used to
control other devices, such as robots and “intelligent” appliances. Information
is also commonly output to secondary storage devices, such as hard drives,
DVD drives and USB flash drives. Popular recent forms of output are smart-
phone and game controller vibration, and virtual reality devices like Oculus
Rift.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the
output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory). Main
memories on desktop and notebook computers contain as much as 128 GB of
RAM, though 2 to 16 GB is most common. GB stands for gigabytes; a gigabyte
is approximately one billion bytes. A byte is eight bits. A bit is either a 0 or a 1.

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms that
allow the computer, for example, to compare two items from the memory unit
to determine whether they’re equal. In today’s systems, the ALU is imple-
mented as part of the next logical unit, the CPU.

Fig. 1.1 | Logical units of a computer. (Part 1 of 2.)

1.3 Data Hierarchy 5

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. Figure 1.2 illustrates a portion of the data hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to
work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %, &, *,
(,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters. The com-
puter’s character set is the set of all the characters used to write programs and represent data
items. Computers process only 1s and 0s, so a computer’s character set represents every char-
acter as a pattern of 1s and 0s. C supports various character sets (including Unicode®) that
are composed of characters containing one, two or four bytes (8, 16 or 32 bits). Unicode con-
tains characters for many of the world’s languages. See Appendix B for more information on

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations
simultaneously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that
can execute billions of instructions per second.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or data
not actively being used by the other units normally are placed on secondary
storage devices (e.g., your hard drive) until they’re again needed, possibly hours,
days, months or even years later. Information on secondary storage devices is
persistent—it’s preserved even when the computer’s power is turned off. Sec-
ondary storage information takes much longer to access than information in
primary memory, but its cost per unit is much less. Examples of secondary stor-
age devices include hard drives, DVD drives and USB flash drives, some of
which can hold over 2 TB (TB stands for terabytes; a terabyte is approximately
one trillion bytes). Typical hard drives on desktop and notebook computers
hold up to 2 TB, and some desktop hard drives can hold up to 6 TB.

Logical unit Description

Fig. 1.1 | Logical units of a computer. (Part 2 of 2.)

6 Chapter 1 Introduction to Computers, the Internet and the Web

the ASCII (American Standard Code for Information Interchange) character set—the pop-
ular subset of Unicode that represents uppercase and lowercase letters, digits and some com-
mon special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Fig. 1.2 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Character J

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

1.3 Data Hierarchy 7

Thus, a record is a group of related fields. In the preceding example, all the fields belong to
the same employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the application programmer.] It’s not unusual for an organization to have many
files, some containing billions, or even trillions, of characters of information.

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc.

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily and
90% of the world’s data was created in just the past two years!2 According to an IDC
study, the global data supply will reach 40 zettabytes (equal to 40 trillion gigabytes) annu-
ally by 2020.3 Figure 1.3 shows some common byte measurements. Big data applications
deal with massive amounts of data and this field is growing quickly, creating lots of oppor-
tunity for software developers. According to a study by Gartner Group, over 4 million IT
jobs globally will support big data by 2015.4

2. http://www.ibm.com/smarterplanet/us/en/business_analytics/article/

it_business_intelligence.html.
3. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024 bytes exactly)

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000 bytes)

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000 bytes)

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000 bytes)

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000 bytes)

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000 bytes)

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000 bytes)

Fig. 1.3 | Byte measurements.

4. http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/.

8 Chapter 1 Introduction to Computers, the Internet and the Web

1.4 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately re-
duced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called as-
semblers were developed to convert early assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language payroll program
also adds overtime pay to base pay and stores the result in gross pay:

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

High-Level Languages and Compilers
With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

+1300042774
+1400593419

+1200274027

load basepay

add overpay
store grosspay

grossPay = basePay + overTimePay

1.5 The C Programming Language 9

From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. C is one of the most widely used high-level programming languages.

Interpreters
Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs.

1.5 The C Programming Language
C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by
Martin Richards as a language for writing operating systems and compilers. Ken Thomp-
son modeled many features in his B language after their counterparts in BCPL, and in
1970 he used B to create early versions of the UNIX operating system at Bell Laboratories.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented in 1972. C initially became widely known as the development lan-
guage of the UNIX operating system. Many of today’s leading operating systems are
written in C and/or C++. C is mostly hardware independent—with careful design, it’s pos-
sible to write C programs that are portable to most computers.

Built for Performance
C is widely used to develop systems that demand performance, such as operating systems,
embedded systems, real-time systems and communications systems (Figure 1.4).

Application Description

Operating systems C’s portability and performance make it desirable for imple-
menting operating systems, such as Linux and portions of
Microsoft’s Windows and Google’s Android. Apple’s OS X is
built in Objective-C, which was derived from C. We discuss
some key popular desktop/notebook operating systems and
mobile operating systems in Section 1.11.

Embedded systems The vast majority of the microprocessors produced each year are
embedded in devices other than general-purpose computers.
These embedded systems include navigation systems, smart
home appliances, home security systems, smartphones, tablets,
robots, intelligent traffic intersections and more. C is one of the
most popular programming languages for developing embedded
systems, which typically need to run as fast as possible and con-
serve memory. For example, a car’s antilock brakes must
respond immediately to slow or stop the car without skidding;
game controllers used for video games should respond instanta-
neously to prevent any lag between the controller and the action
in the game, and to ensure smooth animations.

Fig. 1.4 | Some popular performance-oriented C applications. (Part 1 of 2.)

