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Welcome to the C programming language and to C How to Program, Eighth Edition! This
book presents leading-edge computing technologies for college students, instructors and
software-development professionals.

At the heart of the book is the Deitel signature “live-code approach”—we present con-
cepts in the context of complete working programs, rather than in code snippets. Each
code example is followed by one or more sample executions. Read the online Before You
Begin section at 

to learn how to set up your computer to run the hundreds of code examples. All the source
code is available at 

and

Use the source code we provide to run every program as you study it. 
We believe that this book and its support materials will give you an informative, chal-

lenging and entertaining introduction to C. As you read the book, if you have questions,
send an e-mail to deitel@deitel.com—we’ll respond promptly. For book updates, visit
www.deitel.com/books/chtp8/, join our social media communities: 

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Google+™—http://google.com/+DeitelFan

and register for the Deitel® Buzz Online e-mail newsletter at:

New and Updated Features
Here are some key features of C How to Program, 8/e:

• Integrated More Capabilities of the C11 and C99 standards. Support for the C11
and C99 standards varies by compiler. Microsoft Visual C++ supports a subset of
the features that were added to C in C99 and C11—primarily the features that
are also required by the C++ standard. We incorporated several widely supported
C11 and C99 features into the book’s early chapters, as appropriate for introduc-

http://www.deitel.com/books/chtp8/chtp8_BYB.pdf

http://www.deitel.com/books/chtp8

http://www.pearsonhighered.com/deitel

http://www.deitel.com/newsletter/subscribe.html 
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tory courses and for the compilers we used in this book. Appendix E, Multi-
threading and Other C11 and C99 Topics, presents more advanced features
(such as multithreading for today’s increasingly popular multi-core architectures)
and various other features that are not widely supported by today’s C compilers. 

• All Code Tested on Linux, Windows and OS X. We retested all the example and
exercise code using GNU gcc on Linux, Visual C++ on Windows (in Visual Stu-
dio 2013 Community Edition) and LLVM in Xcode on OS X. 

• Updated Chapter 1. The new Chapter 1 engages students with updated intrigu-
ing facts and figures to get them excited about studying computers and computer
programming. The chapter includes current technology trends and hardware dis-
cussions, the data hierarchy, social networking and a table of business and tech-
nology publications and websites that will help you stay up to date with the latest
technology news and trends. We’ve included updated test-drives that show how
to run a command-line C program on Linux, Microsoft Windows and OS X. We
also updated the discussions of the Internet and web, and the introduction to ob-
ject technology.

• Updated Coverage of C++ and Object-Oriented Programming. We updated
Chapters 15–23 on object-oriented programming in C++ with material from our
textbook C++ How to Program, 9/e, which is up-to-date with the C++11 standard.

• Updated Code Style. We removed the spacing inside parentheses and square
brackets, and toned down our use of comments a bit. We also added parentheses
to certain compound conditions for clarity.

• Variable Declarations. Because of improved compiler support, we were able to
move variable declarations closer to where they’re first used and define for-loop
counter-control variables in each for’s initialization section.

• Summary Bullets. We removed the end-of-chapter terminology lists and updated
the detailed section-by-section, bullet-list summaries with bolded key terms and,
for most, page references to their defining occurrences.

• Use of Standard Terminology. To help students prepare to work in industry
worldwide, we audited the book against the C standard and upgraded our termi-
nology to use C standard terms in preference to general programming terms. 

• Online Debugger Appendices. We’ve updated the online GNU gdb and Visual
C++® debugging appendices, and added an Xcode® debugging appendix.

• Additional Exercises. We updated various exercises and added some new ones,
including one for the Fisher-Yates unbiased shuffling algorithm in Chapter 10.

Other Features
Other features of C How to Program, 8/e include:

• Secure C Programming Sections. Many of the C chapters end with a Secure C
Programming Section. We’ve also posted a Secure C Programming Resource
Center at www.deitel.com/SecureC/. For more details, see the section “A Note
About Secure C Programming” on the next page.
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• Focus on Performance Issues. C (and C++) are favored by designers of performance-
intensive systems such as operating systems, real-time systems, embedded systems
and communications systems, so we focus intensively on performance issues. 

• “Making a Difference” Contemporary Exercises. We encourage you to use com-
puters and the Internet to research and solve significant problems. These exercises
are meant to increase awareness of important issues the world is facing. We hope
you’ll approach them with your own values, politics and beliefs. 

• Sorting: A Deeper Look. Sorting places data in order, based on one or more sort
keys. We begin our sorting presentation in Chapter 6 with a simple algorithm—
in Appendix D, we present a deeper look. We consider several algorithms and
compare them with regard to their memory consumption and processor de-
mands. For this purpose, we present a friendly introduction to Big O notation,
which indicates how hard an algorithm may have to work to solve a problem.
Through examples and exercises, Appendix D discusses the selection sort, inser-
tion sort, recursive merge sort, recursive selection sort, bucket sort and recursive
Quicksort. Sorting is an intriguing problem because different sorting techniques
achieve the same final result but they can vary hugely in their consumption of
memory, CPU time and other system resources. 

• Titled Programming Exercises. Most of the programming exercises are titled to
help instructors conveniently choose assignments appropriate for their students. 

• Order of Evaluation. We caution the reader about subtle order of evaluation issues.

• C++-Style // Comments. We use the newer, more concise C++-style // com-
ments in preference to C’s older style /*...*/ comments.

A Note About Secure C Programming
Throughout this book, we focus on C programming fundamentals. When we write each
How to Program book, we search the corresponding language’s standards document for the
features that we feel novices need to learn in a first programming course, and features that
professional programmers need to know to begin working in that language. We also cover
computer-science and software-engineering fundamentals for novices—our core audience. 

Industrial-strength coding techniques in any programming language are beyond the
scope of an introductory textbook. For that reason, our Secure C Programming sections
present some key issues and techniques, and provide links and references so you can con-
tinue learning. 

Experience has shown that it’s difficult to build industrial-strength systems that stand
up to attacks from viruses, worms, etc. Today, via the Internet, such attacks can be instan-
taneous and global in scope. Software vulnerabilities often come from simple program-
ming issues. Building security into software from the start of the development cycle can
greatly reduce costs and vulnerabilities. 

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—pub-
lishes and promotes secure coding standards to help C programmers and others implement
industrial-strength systems that avoid the programming practices that leave systems vul-
nerable to attacks. The CERT standards evolve as new security issues arise. 



xxvi Preface

We’ve upgraded our code (as appropriate for an introductory book) to conform to var-
ious CERT recommendations. If you’ll be building C systems in industry, consider reading
The CERT C Secure Coding Standard, 2/e (Robert Seacord, Addison-Wesley Professional,
2014) and Secure Coding in C and C++, 2/e (Robert Seacord, Addison-Wesley Professional,
2013). The CERT guidelines are available free online at 

Mr. Seacord, a technical reviewer for the C portion of the last edition of this book, provided
specific recommendations on each of our Secure C Programming sections. Mr. Seacord is
the Secure Coding Manager at CERT at Carnegie Mellon University’s Software Engineering
Institute (SEI) and an adjunct professor in the Carnegie Mellon University School of Com-
puter Science.

The Secure C Programming sections at the ends of Chapters 2–13 discuss many impor-
tant topics, including: 

Web-Based Materials
The book’s open access Companion Website (http://www.pearsonhighered.com/deitel)
contains source code for all the code examples and the following appendices in PDF format:

• Appendix F, Using the Visual Studio Debugger 

• Appendix G, Using the GNU gdb Debugger

• Appendix H, Using the Xcode Debugger

Dependency Charts
Figures 1 and 2 on the next two pages show the dependencies among the chapters to help
instructors plan their syllabi. C How to Program, 8/e is appropriate for CS1 and many CS2
courses, and for intermediate-level C and C++ programming courses. The C++ part of the
book assumes that you’ve studied C Chapters 1–10.

Teaching Approach
C How to Program, 8/e, contains a rich collection of examples. We focus on good software
engineering, program clarity, preventing common errors, program portability and perfor-
mance issues. 

https://www.securecoding.cert.org/confluence/display/seccode/

CERT+C+Coding+Standard 

• testing for arithmetic overflows
• using unsigned integer types
• the more secure functions in the C

standard’s Annex K
• the importance of checking the sta-

tus information returned by stan-
dard-library functions

• range checking
• secure random-number generation
• array bounds checking

• preventing buffer overflows
• input validation
• avoiding undefined behaviors
• choosing functions that return

status information vs. using similar
functions that do not

• ensuring that pointers are always
NULL or contain valid addresses

• using C functions vs. using prepro-
cessor macros, and more.
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Syntax Shading. For readability, we syntax shade the code, similar to the way most IDEs
and code editors syntax color code. Our syntax-shading conventions are:

Fig. 1 | C chapter dependency chart.

comments appear like this in gray

keywords appear like this in dark blue
constants and literal values appear like this in light blue

all other code appears in black
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Code Highlighting. We place gray rectangles around the key code in each program.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold colored text for easy reference. We emphasize C program text
in the Lucida font (for example, int x = 5;).

Objectives. Each chapter begins with a list of objectives. 

Illustrations/Figures. Abundant flowcharts, tables, line drawings, UML diagrams (in the
C++ chapters), programs and program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and teaching experience.

Fig. 2 | C++ chapter dependency chart.

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
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Summary Bullets. We present a detailed section-by-section, bullet-list summary of each
chapter with bolded key terms. For easy reference, most of the key terms are followed by
the page number of their defining occurrences.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.

Exercises. Each chapter concludes with a substantial set of exercises including:

• simple recall of important terminology and concepts

• identifying the errors in code samples

• writing individual program statements

• writing small portions of C functions (and C++ member functions and classes)

• writing complete programs

• implementing major projects

Index. We’ve included an extensive index, which is especially helpful when you use the
book as a reference. Defining occurrences of key terms are highlighted in the index with a
bold colored page number.

Software Used in C How to Program, 8/e
We tested the programs in C How to Program, 8/e using the following free compilers: 

• GNU C and C++ (http://gcc.gnu.org/install/binaries.html), which are al-
ready installed on most Linux systems and can be installed on OS X and Windows
systems. 

• Microsoft’s Visual C++ in Visual Studio 2013 Community edition, which you
can download from http://go.microsoft.com/?linkid=9863608

• LLVM in Apple’s Xcode IDE, which OS X users can download from the Mac
App Store. 

For other free C and C++ compilers, visit:

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

http://www.thefreecountry.com/compilers/cpp.shtml

http://www.compilers.net/Dir/Compilers/CCpp.htm
http://www.freebyte.com/programming/cpp/#cppcompilers

http://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers
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CourseSmart Web Books
Today’s students and instructors have increasing demands on their time and money. Pearson
has responded to that need by offering various digital texts and course materials online
through CourseSmart. Faculty can review course materials online, saving time and costs. It
offers students a high-quality digital version of the text for less than the cost of a print copy.
Students receive the same content offered in the print textbook enhanced by search, note-
taking and printing tools. For more information, visit http://www.coursesmart.com.

Instructor Resources
The following supplements are available to qualified instructors only through Pearson Educa-
tion’s password-protected Instructor Resource Center (www.pearsonhighered.com/irc):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points. 

• Test Item File of multiple-choice questions (approximately two per top-level book
section)

• Solutions Manual with solutions to most (but not all) of the end-of-chapter exer-
cises. Please check the Instructor Resource Center to determine which exercises
have solutions.

Please do not write to us requesting access to the Instructor Resource Center. Access is
restricted to college instructors teaching from the book. Instructors may obtain access
only through their Pearson representatives. If you’re not a registered faculty member, con-
tact your Pearson representative or visit http://www.pearsonhighered.com/replocator/.

Solutions are not provided for “project” exercises. Check out our Programming Proj-
ects Resource Center for lots of additional exercise and project possibilities (http://
www.deitel.com/ProgrammingProjects/).
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1Introduction to Computers, 
the Internet and the Web

O b j e c t i v e s
In this chapter, you’ll learn:

■ Basic computer concepts.

■ The different types of 
programming languages.

■ The history of the C 
programming language.

■ The purpose of the C 
Standard Library.

■ The basics of object 
technology.

■ A typical C program- 
development environment.

■ To test-drive a C application 
in Windows, Linux and Mac 
OS X.

■ Some basics of the Internet 
and the World Wide Web.
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1.1 Introduction
Welcome to C and C++! C is a concise yet powerful computer programming language
that’s appropriate for technically oriented people with little or no programming experience
and for experienced programmers to use in building substantial software systems. C How
to Program, Eighth Edition, is an effective learning tool for each of these audiences.

The core of the book emphasizes software engineering through the proven methodol-
ogies of structured programming in C and object-oriented programming in C++. The book
presents hundreds of complete working programs and shows the outputs produced when
those programs are run on a computer. We call this the “live-code approach.” All of these
example programs may be downloaded from our website www.deitel.com/books/chtp8/.

Most people are familiar with the exciting tasks that computers perform. Using this
textbook, you’ll learn how to command computers to perform those tasks. It’s software
(i.e., the instructions you write to command computers to perform actions and make deci-
sions) that controls computers (often referred to as hardware). 

1.1  Introduction 
1.2  Hardware and Software 

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3  Data Hierarchy 
1.4  Machine Languages, Assembly 

Languages and High-Level Languages 
1.5  The C Programming Language 
1.6  C Standard Library 
1.7  C++ and Other C-Based Languages 
1.8  Object Technology 

1.8.1 The Automobile as an Object
1.8.2 Methods and Classes
1.8.3 Instantiation
1.8.4 Reuse
1.8.5 Messages and Method Calls
1.8.6 Attributes and Instance Variables
1.8.7 Encapsulation and Information Hiding
1.8.8 Inheritance

1.9  Typical C Program-Development 
Environment 

1.9.1 Phase 1: Creating a Program
1.9.2 Phases 2 and 3: Preprocessing and 

Compiling a C Program
1.9.3 Phase 4: Linking
1.9.4 Phase 5: Loading
1.9.5 Phase 6: Execution
1.9.6 Problems That May Occur at 

Execution Time

1.9.7 Standard Input, Standard Output and 
Standard Error Streams

1.10  Test-Driving a C Application in 
Windows, Linux and Mac OS X 

1.10.1 Running a C Application from the 
Windows Command Prompt

1.10.2 Running a C Application Using GNU 
C with Linux

1.10.3 Running a C Application Using the 
Teminal on Mac OS X

1.11  Operating Systems 
1.11.1 Windows—A Proprietary Operating 

System
1.11.2 Linux—An Open-Source Operating 

System
1.11.3 Apple’s Mac OS X; Apple’s iOS for 

iPhone®, iPad® and iPod Touch® 
Devices

1.11.4 Google’s Android
1.12  The Internet and World Wide Web 

1.12.1 The Internet: A Network of Networks
1.12.2 The World Wide Web: Making the 

Internet User-Friendly
1.12.3 Web Services
1.12.4 Ajax
1.12.5 The Internet of Things

1.13  Some Key Software Terminology 
1.14  Keeping Up-to-Date with 

Information Technologies 
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1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!1 To put that in perspective, the
Tianhe-2 supercomputer can perform in one second about 3 million calculations for every per-
son on the planet! And supercomputing “upper limits” are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs. These software programs guide the computer through ordered actions
specified by people called computer programmers. 

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software tech-
nologies. Computers that might have filled large rooms and cost millions of dollars
decades ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a
few dollars each. Ironically, silicon is one of the most abundant materials on Earth—it’s
an ingredient in common sand. Silicon-chip technology has made computing so econom-
ical that computers have become a commodity. 

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly. 

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs,
the amount of secondary storage (such as disk storage) they have to hold programs and
data over longer periods of time, and their processor speeds—the speeds at which they exe-
cute their programs (i.e., do their work). 

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1. http://www.top500.org.
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1.2.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.1).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs) 
from input devices and places it at the disposal of the other units for process-
ing. Most user input is entered into computers through keyboards, touch 
screens and mouse devices. Other forms of input include receiving voice com-
mands, scanning images and barcodes, reading from secondary storage devices 
(such as hard drives, DVD drives, Blu-ray Disc™ drives and USB flash 
drives—also called “thumb drives” or “memory sticks”), receiving video from a 
webcam and having your computer receive information from the Internet (such 
as when you stream videos from YouTube® or download e-books from Ama-
zon). Newer forms of input include position data from a GPS device, and 
motion and orientation information from an accelerometer (a device that 
responds to up/down, left/right and forward/backward acceleration) in a smart-
phone or game controller (such as Microsoft® Kinect® for Xbox®, Wii™ 
Remote and Sony® PlayStation® Move).

Output unit This “shipping” section takes information the computer has processed and 
places it on various output devices to make it available for use outside the com-
puter. Most information that’s output from computers today is displayed on 
screens (including touch screens), printed on paper (“going green” discourages 
this), played as audio or video on PCs and media players (such as Apple’s iPods) 
and giant screens in sports stadiums, transmitted over the Internet or used to 
control other devices, such as robots and “intelligent” appliances. Information 
is also commonly output to secondary storage devices, such as hard drives, 
DVD drives and USB flash drives. Popular recent forms of output are smart-
phone and game controller vibration, and virtual reality devices like Oculus 
Rift. 

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains 
information that has been entered through the input unit, making it 
immediately available for processing when needed. The memory unit also 
retains processed information until it can be placed on output devices by the 
output unit. Information in the memory unit is volatile—it’s typically lost 
when the computer’s power is turned off. The memory unit is often called 
either memory, primary memory or RAM (Random Access Memory). Main 
memories on desktop and notebook computers contain as much as 128 GB of 
RAM, though 2 to 16 GB is most common. GB stands for gigabytes; a gigabyte 
is approximately one billion bytes. A byte is eight bits. A bit is either a 0 or a 1.

Arithmetic 
and logic unit 
(ALU)

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms that 
allow the computer, for example, to compare two items from the memory unit 
to determine whether they’re equal. In today’s systems, the ALU is imple-
mented as part of the next logical unit, the CPU.

Fig. 1.1 | Logical units of a computer. (Part 1 of 2.)
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1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. Figure 1.2 illustrates a portion of the data hierarchy. 

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to
work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %, &, *,
(, ), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters. The com-
puter’s character set is the set of all the characters used to write programs and represent data
items. Computers process only 1s and 0s, so a computer’s character set represents every char-
acter as a pattern of 1s and 0s. C supports various character sets (including Unicode®) that
are composed of characters containing one, two or four bytes (8, 16 or 32 bits). Unicode con-
tains characters for many of the world’s languages. See Appendix B for more information on

Central 
processing 
unit (CPU)

This “administrative” section coordinates and supervises the operation of the 
other sections. The CPU tells the input unit when information should be read 
into the memory unit, tells the ALU when information from the memory unit 
should be used in calculations and tells the output unit when to send 
information from the memory unit to certain output devices. Many of today’s 
computers have multiple CPUs and, hence, can perform many operations 
simultaneously. A multi-core processor implements multiple processors on a 
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that 
can execute billions of instructions per second. 

Secondary 
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or data 
not actively being used by the other units normally are placed on secondary 
storage devices (e.g., your hard drive) until they’re again needed, possibly hours, 
days, months or even years later. Information on secondary storage devices is 
persistent—it’s preserved even when the computer’s power is turned off. Sec-
ondary storage information takes much longer to access than information in 
primary memory, but its cost per unit is much less. Examples of secondary stor-
age devices include hard drives, DVD drives and USB flash drives, some of 
which can hold over 2 TB (TB stands for terabytes; a terabyte is approximately 
one trillion bytes). Typical hard drives on desktop and notebook computers 
hold up to 2 TB, and some desktop hard drives can hold up to 6 TB.

Logical unit Description

Fig. 1.1 | Logical units of a computer. (Part 2 of 2.)
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the ASCII (American Standard Code for Information Interchange) character set—the pop-
ular subset of Unicode that represents uppercase and lowercase letters, digits and some com-
mon special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records 
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Fig. 1.2 | Data hierarchy.
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Thus, a record is a group of related fields. In the preceding example, all the fields belong to
the same employee. A company might have many employees and a payroll record for each. 

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the application programmer.] It’s not unusual for an organization to have many
files, some containing billions, or even trillions, of characters of information. 

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc. 

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily and
90% of the world’s data was created in just the past two years!2 According to an IDC
study, the global data supply will reach 40 zettabytes (equal to 40 trillion gigabytes) annu-
ally by 2020.3 Figure 1.3 shows some common byte measurements. Big data applications
deal with massive amounts of data and this field is growing quickly, creating lots of oppor-
tunity for software developers. According to a study by Gartner Group, over 4 million IT
jobs globally will support big data by 2015.4 

2. http://www.ibm.com/smarterplanet/us/en/business_analytics/article/

it_business_intelligence.html.
3. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024 bytes exactly)

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000 bytes)

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000 bytes)

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000 bytes)

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000 bytes)

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000 bytes)

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000 bytes)

Fig. 1.3 | Byte measurements.

4. http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/.
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1.4 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately re-
duced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called as-
semblers were developed to convert early assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language payroll program
also adds overtime pay to base pay and stores the result in gross pay:

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

High-Level Languages and Compilers
With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

+1300042774
+1400593419

+1200274027

load basepay

add  overpay
store grosspay

grossPay = basePay + overTimePay
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From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. C is one of the most widely used high-level programming languages. 

Interpreters
Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs.

1.5 The C Programming Language
C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by
Martin Richards as a language for writing operating systems and compilers. Ken Thomp-
son modeled many features in his B language after their counterparts in BCPL, and in
1970 he used B to create early versions of the UNIX operating system at Bell Laboratories. 

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented in 1972. C initially became widely known as the development lan-
guage of the UNIX operating system. Many of today’s leading operating systems are
written in C and/or C++. C is mostly hardware independent—with careful design, it’s pos-
sible to write C programs that are portable to most computers.

Built for Performance
C is widely used to develop systems that demand performance, such as operating systems,
embedded systems, real-time systems and communications systems (Figure 1.4). 

Application Description

Operating systems C’s portability and performance make it desirable for imple-
menting operating systems, such as Linux and portions of 
Microsoft’s Windows and Google’s Android. Apple’s OS X is 
built in Objective-C, which was derived from C. We discuss 
some key popular desktop/notebook operating systems and 
mobile operating systems in Section 1.11.

Embedded systems The vast majority of the microprocessors produced each year are 
embedded in devices other than general-purpose computers. 
These embedded systems include navigation systems, smart 
home appliances, home security systems, smartphones, tablets, 
robots, intelligent traffic intersections and more. C is one of the 
most popular programming languages for developing embedded 
systems, which typically need to run as fast as possible and con-
serve memory. For example, a car’s antilock brakes must 
respond immediately to slow or stop the car without skidding; 
game controllers used for video games should respond instanta-
neously to prevent any lag between the controller and the action 
in the game, and to ensure smooth animations.

Fig. 1.4 | Some popular performance-oriented C applications. (Part 1 of 2.)




